Constrained non-linear multi-objective optimisation of preventive maintenance scheduling for offshore wind farms

Shuya Zhonga,c,g, Athanasios A. Pantelousb,c,d,g, Michael Beer c,e,f,* Jian Zhoug

The Logistics Institute-Asia Pacific, National University of Singapore, Singapore
Department of Econometrics and Business Statistics, Monash University, Victoria, Australia
Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany
School of Civil Engineering & Shanghai Institute of Disaster Prevention and Relief, Tongji University, China
Department of Management Science and Engineering, Shanghai University, Shanghai China

ARTICLE INFO
Article history:
Received 28 December 2016
Received in revised form 18 September 2017
Accepted 24 October 2017

Keywords:
Reliability
Maintenance
Scheduling
Cost parameters
Offshore wind farms
Multi-objective Programming

ABSTRACT
Offshore wind farm is an emerging source of renewable energy, which has been shown to have tremendous potential in recent years. In this blooming area, a key challenge is that the preventive maintenance of offshore turbines should be scheduled reasonably to satisfy the power supply without failure. In this direction, two significant goals should be considered simultaneously as a trade-off. One is to maximise the system reliability and the other is to minimise the maintenance related cost. Thus, a non-linear multi-objective programming model is proposed including two newly defined objectives with thirteen families of constraints suitable for the preventive maintenance of offshore wind farms. In order to solve our model effectively, the nondominated sorting genetic algorithm II, especially for the multi-objective optimisation is utilised and Pareto-optimal solutions of schedules can be obtained to offer adequate support to decision-makers. Finally, an example is given to illustrate the performances of the devised model and algorithm, and explore the relationships of the two targets with the help of a contrast model.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction - motivation

The wind energy capacity currently installed in the European Union (EU) can produce 284 TWh of electricity in an average wind year, which is enough to cover 10.2% of the EU’s total electricity consumption.1

At present, offshore wind power accounts for almost 1.1% of the EU’s total capacity in the electricity consumption. Obviously, offshore wind farms are emerging to be one of the driving sources of energy in the green power world. In the US in May 2014, the U.S. Department of Energy awarded three multi-million demonstration projects planned for the New Jersey, Oregon and Virginia coasts. In theory, the potential benefit and challenge are tremendous [39]. In Germany, the ambitious Energiewende (energy transition) programme hopes to generate at least 35% of its electricity from the green renewable

1 The UK remains in Europe with the largest amount of installed offshore wind capacity (45.9%), followed by Germany (29.9%), Denmark (11.5%), Belgium (6.5%), the Netherlands (3.9%) and Sweden (1.8%) (more details can be found in the EWEA's report [47]).
energy by 2020, and by 2050 the share is expected to surpass 80%. Again, offshore wind farms in north coastal parts of Germany play a key role in this direction [42]. Last, but not least, it should also be mentioned the Chinese government is giving considerable weight to exploiting this environmentally friendly resource of energy, particularly along the south-eastern part of its coast line [7].

Maintenance is classified into two main categories: the corrective and the preventive maintenance. The former one is usually performed after a system failure or breakdown while the latter one corresponds to the scheduled actions, which are performed while the system is still operational. Generally speaking, the preventive maintenance (PM) is more beneficial as it may prevent serious losses due to unpredicted failures [32].

This paper is aimed at the PM scheduling of offshore wind farms. For generalised power systems, the primary goal of the PM is to avoid or mitigate failure consequences of the electrical and mechanical parts of the system caused by fatigue cumulative damages and corrosion resistance degradations. PM is able to prevent faults effectively either before they occur or before they develop into major defects. Scheduling means to determine the most satisfied arrangement for the downtime of elements in offshore wind farms that need to be preventively maintained. Hence, our PM scheduling of offshore wind farms is transformed to an interesting optimisation problem, which is useful to different decision-makers in the green energy world.

The rest of the paper is organized as follows. In Section 2, a discussion about the new reliability and economic criteria is provided. Section 3 introduces and reviews the algorithm used for solving our problem. A non-linear multi-objective programming model with thirteen families of constraints for the PM scheduling of offshore wind farms is formulated, as well as its contrast model using the squares of net reserves minimisation objective in Section 4. Then, the technical parts of Non-dominated Sorting Genetic Algorithm II (NSGA-II) are presented in Sections 5 and Appendix A. The effectiveness and performance of the proposed and contrast models are illustrated by presenting a numerical example in Section 6, and the results are analysed and compared from three main respects.

2. Objective functions

Reliability and economic criteria are the two most popular objectives for the maintenance optimisation models of power systems according to the literature to date. However, only a few studies have investigated the maintenance problem particularly designed for the offshore wind energy sector. In the following subsections, an analysis of the two criteria is provided.

2.1. Reliability criterion

In terms of the reliability criterion, there are commonly two mainstream definitions. The first one is related to the required net power reserves to provide the stability in meeting the customer demand, and the second one indicates the deviation of the net power reserves, i.e., the reserve margin. The net power reserve is the balance of the gross reserve after deducting the maintenance loss. For the first type of the reliability measure, Kralj and Petrović [27] suggested that the net reserve generation can be maximised as an optimality criterion. Later, Conejo et al. [6] made a further development and first defined the reliability as the net reserve being divided by the gross reserve. This formulation soon became a classical objective for the maximisation of PM scheduling models. Canto [3] employed it to solve the PM scheduling problem of power plants, and then Canto and Romero [4] extended its application to the problems associated with wind farms integrated power plants.

For the second type of reliability perspective, Egan et al. [16] first proposed that the minimisation of the sum of the squares of the reserves (SSR) would prevent the large variations in the net power reserves of each time period, which means the maximization of the reliability. There followed an upsurge in the use of this reliability definition by other scholars, [8,1,10,11,17,43].

In our paper, we will adjust the first type of the conventional reliability criterion in the PM scheduling of offshore wind farms to model the behavioral attitude of our treatment. As only the customer power demand satisfaction delineated by the power reserve ratio has been studied in the previous definitions from the demand perspective, here the reliability criterion can be better depicted if the decision-maker preferences are also taken into account over a set of choices or attitudes. Moreover, in offshore wind farms, the particularly complex and variable marine environment contributes to the effects of the maintenance and degeneration on the real power reserve which may not have such significant influence on other kinds of power plants [42]. Therefore, another factor, the system sustainability, which means the sustainable capability of reserving the power under the combined impacts of the maintenance work and the system degradation in each time period, is of equal importance to be considered in the reliability frame. It can reflect the actually attained power reserve ratio by exponentially adjusting the estimated power reserve ratio. Thus, we propose a novel non-linear definition of the reliability with both of the demand and supply side regards by introducing what we call the “attainment exponent”, 2 so as to describe the decision-maker’s preferences, the power demand satisfaction and the system sustainability simultaneously.

2 This can also be seen a curvature parameter in the reliability index, see Section 4.2.1.
2.2. Economic criterion

With respect to the economic criterion (i.e., the maintenance related cost measure), the minimisation of the cost is always a unified objective definition for almost all maintenance scheduling problems with economic targets. Differences are mainly located in the diverse ingredients of the maintenance cost in different models. The amount of literature in this direction is vast, as many researches have introduced different economic criteria, [12,23,25,31,40], which have discussed in the offshore wind energy sector. In representative works summarized in Table 1, one can see that there are basically 8 kinds of costs related to the maintenance of power systems: power production, maintenance, start-up, fixed, variable, opportunity, compensation, and failure costs. Specifically, the power production and maintenance costs are the two fundamental costs mostly taken into account when building a cost minimisation objective, and the remaining types of costs are used in different degrees. According to Dahal et al. [9], Ding and Tian [14] and Zhang et al. [52], the market related maintenance costs3 and the accompanying compensation cost4 can usually be found in both the preventive and corrective maintenance, while the failure cost (i.e., cost of repair or replacement because of failures) arises only after the breakdown has happened in the mechanical system.

In order to cater to the PM without a power shortage or system failure in this paper, we refer to the definitions of the no-failure maintenance cost presented by Dahal et al. [9] and Dalgic et al. [12] to some degree, including the classical maintenance cost (direct and indirect costs), the start-up cost, the fixed cost, the variable cost and the opportunity cost, owing to opportunity foregone as the economic criterion of our PM scheduling problem of offshore wind farms. Although the power production cost is used in most of the literature, it is not imported in our model because we attribute it to its weak relationship with maintenance works. In addition, some other cost factors particularly for wind farms are also involved in our definition as indicated by Ding and Tian [14] and Gundegjerde et al. [23], e.g., the fixed cost of sending vessels to wind farms for maintenance, the variable access cost to wind turbines, etc. Thus, a new rational and offshore wind farm-oriented maintenance related cost criterion is well built to conduct an overall weighting.

3. Optimisation technique

There are different approaches of multi-objective optimisation for mechanical systems [22,33]. Since reliability and economic criteria are both very important for maintenance scheduling problems of power systems, they should be treated equally to implement a simultaneous optimisation. Actually, models commonly set either reliability maximisation or maintenance cost minimisation as their objective functions. Lack of studies on the multi-objective optimisation with classical reliability and cost criteria is a challenge to decision-makers. It is difficult for them to get effective solutions for a reasonable assignment of the two elements in the maintenance scheduling. Therefore, in this paper, for the first time, according to the authors’ knowledge, a constrained non-linear multi-objective programming model is constructed for the PM scheduling of offshore wind farms in order to maximise the reliability and minimise the maintenance cost concurrently. Furthermore, for better understanding the performance of the proposed model, we also raise a contrast model, in which the only difference

Table 1
Literature of the maintenance related cost composition for power systems.

<table>
<thead>
<tr>
<th>Literature</th>
<th>Power production cost</th>
<th>Maintenance cost</th>
<th>Start-up cost</th>
<th>Fixed cost</th>
<th>Variable cost</th>
<th>Opportunity cost</th>
<th>Compensation cost</th>
<th>Failure cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marwali & Shahidehpour [35]</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leou [29]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chattopadhyay [5]</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conejo et al. [6]</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canto [2]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feng et al. [20]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ding & Tian [14]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekpenyong et al. [17]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al. [52]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doostparast et al. [15]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Sharkh [18]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fattahi et al. [19]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollahassani-pour et al. [37]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dahal et al. [9]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalgic et al. [12]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gundegjerde et al. [23]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagaros et al. [28]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lv et al. [34]</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 The opportunity cost which partly means the revenue loss due to the power shortage caused by the maintenance outage.
4 The cost to purchase electricity from other markets to meet customer requirements.
is that the reliability objective is replaced by the SSR minimisation definition. Thus, the relationship between reliability and maintenance cost objectives can be deeply studied by analyzing the trade-offs between the two goals, as well as comparing them using the proposed as well the contrast model.

With respect to the solving methods of the designed multi-objective programming model, the most classical way is to transform it into a single-objective model by the weighted sum approach. As the reliability and maintenance cost objectives with different measures are conflicting with each other, only the sacrificing on one objective can make the other closer to the optimal goal. Thus, this obviously makes the weight setting a process with strong subjectivity and the availability of optimisation results becomes badly affected. Moreover, when such a method is used for seeking multiple satisfying solutions, it has to be applied many times, hopefully finding a different solution at each iteration. If more solutions cannot be obtained, decision-makers are unable to evaluate each objective by the single solution effectively. In order to overcome the shortcomings, multi-objective evolutionary algorithms (MOEAs) are proposed for their ability to find multiple Pareto-optimal solutions in a single simulation run. The first MOEA, called vector evaluated genetic algorithm (VEGA) was proposed by Schaffer [41]. An algorithm called nondominated sorting genetic algorithm (NSGA) based on the nondominated sorting is proposed by Srinivas and Deb [45]. It was later developed by Deb et al. [13] and named NSGA-II, which alleviates high computational complexity of the nondominated sorting, lack of the elitism and use of the sharing parameter.

MOEAs are employed to solve some multi-objective maintenance scheduling models for power systems. Leou [30] put forward a genetic algorithm (GA) combined with the simulated annealing method to solve the unit maintenance scheduling problem with the fitness maximisation objective composed by reliability and cost indices. In the maintenance scheduling optimisation in Yang et al. [50], the Markov model was used to handle reliability and cost objectives, and then in Yang and Chang [49], the same model was rebuilt for energy not served, and operation and expected failure cost objectives. Both models were solved by NSGA-II, so with the imperfect PM maintenance model in Wang and Pham [48], Zhan et al. [51] designed a multi-objective generation maintenance scheduling model, in which five objectives containing the profit maximisation, SSR minimisation and generation cost minimisation were optimised by group search optimizer with multiple producers.

Hence, in our paper, we utilise the NSGA-II, which is able to find a much better spread of solutions and better convergence near the true Pareto-optimal front when compared to other MOEAs, to solve our constrained non-linear multi-objective programming model for the PM scheduling of offshore wind farms. After decision-makers obtain Pareto-optimal solutions from the algorithm, they need to analyse the results and make trade-off decisions for determining an appropriate satisficing solution to support the offshore wind farm project.

4. Mathematical model formulation

In this section, the formulation of the multi-objective programming model is presented with the objectives of reliability maximization and cost minimisation under several realistic constraints for the PM scheduling problem of offshore wind farms.

4.1. Notations

Before we proceed further, indices, parameters and decision variables used in this paper are introduced in Table 2.

4.2. Mathematical formulation of objective functions

Our aim is to allocate m turbines in offshore wind farms to implement their maintenance in different time periods, taking into account optimising the system reliability and the maintenance cost simultaneously. Since the two goals are contradicting, satisfying results can be derived only after recommending appropriate trade-off decision-making strategies.

4.2.1. System reliability maximization objective

The first objective function is to maximise the system reliability. The reliability of the whole offshore wind farm system means the customer demand satisfaction for enough electricity is reserved, and simultaneously to consider the effects of the sustainability.

In our problem, dual influences to the system reliability which are brought by maintenance are taken into consideration. On the one hand, there should always be sufficient power generated for normal market consumption and inevitably for satisfying on-peak demand while some turbines stop working due to maintenance. Therefore, performing the necessary maintenance makes the energy generation decrease, resulting in increasing the probability that the power demand cannot be fully satisfied. On the other hand, the maintenance can fight against corrosion and the degradation of the substructures of turbines, and attempts to reduce the risk of serious grid breakdowns. Thereby, three different possible effects emerge to provide actual achievements of the customer power demand satisfaction, i.e., the power reserve ratio. One is that the service life of turbines is extended and the sustainable development of the system is promoted, another is that the system maintains balance to guarantee the average level, and the third is that the system is still getting worse after maintenance because of some deep-rooted or irreversible degenerations.
Table 2
Notations for the PM scheduling problem of offshore wind farms.

m	Number of turbines in wind farm
i	Index of offshore wind turbines
n	Number of periods in time horizon
t	Index of time periods
TR_i	The ith turbine
PR_t	The tth period
p_{it}	Power (MW) generated by TR_i in PR_t
d_t	Power (MW) required in PR_t
s_t	Attainment exponent affecting power demand satisfaction in PR_t, $s_t > 0$
E_t	Gross power reserve (MW) in PR_t
e_t	Net power reserve (MW) in PR_t
r_t	Reliability (%) in PR_t
R	System reliability (%) of wind farm
C_{ve}^t	Vessel manpower cost (€) in PR_t
C_{he}^t	Helicopter manpower cost (€) in PR_t
C_{om}^t	Onshore manpower cost (€) in PR_t
M_{v}^t	Vessel manpower demand for TR_i
M_{h}^t	Helicopter manpower demand for TR_i
M_{on}^t	Onshore manpower demand for TR_i
C_{tc}^t	Total manpower cost (€) for TR_i in PR_t
C_{eq}^t	Equipment cost (€) for TR_i in PR_t
C_{em}^t	Environmental monitoring cost (€) for TR_i in PR_t
C_{vt}^t	Unit vessel transport cost (€) for TR_i in PR_t
C_{ht}^t	Unit helicopter transport cost (€) for TR_i in PR_t
V_{t}	Vessel demand for maintaining TR_i
H_{t}	Helicopter need for maintaining TR_i
L_{PR}	Maintenance duration TR_i requires
C_{v}^t	Per unit fixed cost (€) of vessels
C_{h}^t	Per unit fixed cost (€) of helicopters
A_{t}^t	Total transport cost (€) of TR_i in PR_t
A_{m}^t	Adjustment cost (€) for TR_i in PR_t
C_{cm}^t	Customer relationship management cost (€) for TR_i in PR_t
C_{cm}^t	Total maintenance cost (€) for TR_i in PR_t
U	Time period set not allowed for maintenance

The system reliability R is the average of reliabilities r_t in all periods, which are defined as exponentials of the attainment factor s_t^5, with the base measuring the proportion of the net power reserve e_t to the gross power reserve E_t. Thus, the reliability r_t in PR_t is

$$r_t = \left(\frac{e_t}{E_t}\right)^{s_t},$$

in which the gross power reserve E_t (MW) means to deduct the customer electricity demand from the amount generated by all turbines, i.e.,

$$E_t = \sum_{i=1}^{m} p_{it} - d_t,$$

and the net power reserve e_t (MW) also needs to subtract the shutdown loss of the energy production caused by the maintenance as

$$e_t = \sum_{i=1}^{m} p_{it}(1 - x_{it}) - d_t,$$

where $x_{it} \in \{0, 1\}$.

So the equivalent form of the reliability r_t in Eq. (1) is

$$r_t = \left[\frac{\sum_{i=1}^{m} p_{it}(1 - x_{it}) - d_t}{\sum_{i=1}^{m} p_{it} - d_t}\right]^{s_t}.$$

It can be seen that the value of the power reserve ratio e_t/E_t partly reflects whether the system is reliable in PR_t. It is also noted the lower bound is that the power reserve should at least be enough to satisfy the customer requirement though some turbines stop working for maintenance, i.e., $e_t = 0$, $e_t/E_t = 0$, $r_t = 0$, and the upper bound is that the net power reserve equals to the gross power reserve when there is no turbine in maintenance in PR_t, i.e., $e_t = 1$, $e_t/E_t = 1$, $r_t = 1$.

5 Actually, in this paper, we recommend for the very first time according to the authors’ knowledge, the use of an isoelastic function (or in another word, the use of a power function) to model the behavioral attitude of our treatment, see Section 2.1. The isoelastic utility function is a special case of the hyperbolic absolute risk aversion (HARA) utility functions, and is used in analyses either including or not including the underlying risk. For more details, see [44] among numerous others.
Regarding the exponent, i.e., the attainment factor \(s_t \), since the base is \(e_t/E_t \in [0,1] \), the reliability \(r_t \) decreases from 1 approaching to 0 with \(s_t \in (0, +\infty) \) increasing according to properties of the exponential function. It also gives the power reserve ratio \(e_t/E_t \) three different kinds of effects by different parameter values as follows:

1. “Positive” effect: \(r_t = (e_t/E_t)^{s_t} > e_t/E_t \), when \(s_t \in (0, 1) \). The reliability index is upgraded by the decision-maker.
2. “Neutral” effect: \(r_t = (e_t/E_t)^{s_t} = e_t/E_t \), when \(s_t = 1 \). This means that impact of the decision-maker is the same. There is neither an upgrade nor a downgrade of the reliability index.
3. “Negative” effect: \(r_t = (e_t/E_t)^{s_t} < e_t/E_t \), when \(s_t \in (1, +\infty) \). In this case, there is a downgrade.

Especially, for purpose of better understanding the positive, neutral and negative effects brought by different attainment exponents \(s_t \), Fig. 1 provides an illustrative example of \(r_t = (2/5)^{s_t} \), in which each point stands for a type of effect, respectively.

Since the electricity generated and demanded in each time period is an approximate estimate in terms of the historical data, the power reserve ratio \(e_t/E_t \) which has eliminated the influence of the maintenance downtime, as well as the attainment exponent \(s_t \) reflecting the effects of decision-makers attitude, can coordinate to represent the actual achievement of the customer power demand satisfaction. The power reserve ratio and the attainment exponent are two constitutive elements of the reliability \(r_t \) in PR. Then the system reliability \(R \) can be defined by averaging individual reliabilities \(r_t \) as

\[
R = \sum_{t=1}^{n} \frac{1}{n} r_t,
\]

in which the weight coefficient \(1/n \) of \(r_t \) are for normalization to adjust \(R \) into the range \([0, 1]\). According to Eqs. (1) and (4), the system reliability \(R \) is equivalent to

\[
R = \sum_{t=1}^{n} \frac{1}{n} \left(\frac{e_t}{E_t} \right)^{s_t} = \sum_{t=1}^{n} \frac{1}{n} \left[\frac{\sum_{i=1}^{n} p_{t,i}(1 - x_{t,i}) - d_t}{\sum_{i=1}^{n} p_{t,i} - d_t} \right]^{s_t}.
\]

Notably, due to \(n \) reliabilities \(r_t \) constituting the final reliability \(R \), it means that there are \(n \) attainment exponents \(s_t \) needed to be settled based on three different types of effects. As it is difficult to collect the exact data of the effects due to the unknown degradation status and the maintenance capability especially for newly grid-connected offshore wind farms, a feasible scheme is to draw support from the decision-maker’s experience. Over the entire time horizon, decision-maker’s attitudes and preferences to the maintenance versus degradation trend of the offshore wind power project. Thus, in what follows, we test some predefined behavioral attitudes of the decision-makers. Obviously, the proposed four categories, “fully rational”, “optimism biased”, “wait-and-see attitudes” and “pessimism biased” are initiating and inspiring, rather than exhaustive and conclusive for the research on maintenance, and more generally speaking, in the behavioral approach of the reliability index and our multi-objective constrained optimisation problem. So, let us define the four categories of attitudes:

![Image](image_url)

Fig. 1. An example for three types of effects of attainment exponents with \(r_t = (2/5)^{s_t} \) and \(s_t = 0.5, 1 \) and 3, respectively.
(1) When decision-makers are **fully rational**, and all the three effects appear in sequence over the time. Specifically, they believe that if turbines are maintained as much as possible in the early stage of all \(n \) periods, attainment exponents \(s_i \) give the customer demand satisfaction positive impacts because it is not only easier to solve the degradation but also benefits the system survivability for the duration. When it comes to the mid-term stage, the effects of \(s_i \) tend to be neutral as the system performance gradually weakens. Along with the continuous decline, no matter that the turbines have already been maintained before the latter stage or are precisely in maintenance, the advantages from the maintenance are overtaken by cumulative damages and failure risks. Accordingly, negative influences of \(s_i \) on customer satisfaction occur in the latter stage. Therefore, attainment exponents \(s_1, s_2, \ldots, s_n \) are selected from the three sets \((0.1), (1), (1, +\infty) \).

(2) When decision-makers are **optimism biased**, they are always inclined to think that a higher real customer demand satisfaction on positive effects of attainment exponents \(s_i \) can be reached. It means that the maintenance is able to overwhelm the deterioration over all \(n \) periods and the system reliability remains at a high level. Therefore, when decision-makers have such a preference, all attainment exponents \(s_1, s_2, \ldots, s_n \) are chosen from the interval \((0, 1] \).

(3) When decision-makers take **wait-and-see attitudes**, which refer to no clear or specific preference firmly in mind, they think that efforts of the maintenance and the deterioration can be perceived as merits equal to demerits. No bias on the real achieved customer satisfaction and reliability happens in any period over the time horizon. Thus, all attainment exponents \(s_1, s_2, \ldots, s_n \) equal to 1, i.e., no exponents when decision-makers are conservative, which suggests that it transforms to the first conventional reliability criterion of the PM scheduling (the power reserve ratio). Therefore, the classical power reserve ratio is included as one of the particular scenarios in our reliability formulation, so that the limitation of the original reliability design is reflected and improved.

(4) When decision-makers are **pessimism biased**, it is thought that negative effects of attainment exponents \(s_i \) take up whole time periods owing to all kinds of degradations and risks in the severe marine environment, even the maintenance is essentially not powerful enough to improve the instability of the wind farm system. Consequently, all attainment exponents \(s_1, s_2, \ldots, s_n \) can be picked from the interval \((1, +\infty) \).

In accordance with the four kinds of decision-maker’s attitudes, the system reliability \(R \) can be determined explicitly by the weighted sum of reliabilities \(r_i \). Hence, the first non-linear objective function of our model is the system reliability maximisation:

\[
\max R = \max S \sum_{t=1}^{n} \frac{1}{n} \left(\frac{\sum_{i=1}^{m} p_{il} (1 - x_{it}) - d_t}{\sum_{i=1}^{m} p_{il} - d_t} \right)^{s_i}. \tag{7}
\]

4.2.2. Maintenance cost minimisation objective

The second objective function is to minimise the maintenance related cost. In the following, the seven costs including the **manpower**, **equipment**, **infrastructure**, **environmental monitoring**, **transportation**, **adjustment** and **customer relationship management** costs are introduced explicitly:

1. **Manpower cost** \(C_{it}^{\text{M}} \): the direct maintenance cost for technical and administrative labour in maintaining offshore wind farms, and the indirect maintenance cost for staff welfare. It can be expressed as

\[
C_{it}^{\text{M}} = C_t^{\text{MV}} M_t^V + C_t^{\text{MM}} M_t^M + C_t^{\text{MF}} M_t^F, \tag{8}
\]

where \(C_t^{\text{MV}}, C_t^{\text{MM}}, \) and \(C_t^{\text{MF}} \) are per capita manpower costs in PR, for employees working on vessels, helicopters and land, and \(M_t^V, M_t^M, \) and \(M_t^F \) are corresponding amounts of manpower needed for maintaining TR.

2. **Equipment cost** \(C_{it}^{\text{E}} \): the direct maintenance cost for purchasing spare parts, material and equipment required for the maintenance of TR in PR, as well as the indirect maintenance cost for equipment storage and testing.

3. **Infrastructure cost** \(C_{it}^{\text{I}} \): the start-up cost of enabling infrastructures (i.e., ports, docks, helipads, etc.) that support the maintenance of TR in PR, and the indirect maintenance cost of operating and maintaining them.

4. **Environmental monitoring cost** \(C_{it}^{\text{EM}} \): the indirect maintenance cost of monitoring whether the maintenance activities seriously influence the marine environment around offshore wind farms beyond acceptable thresholds, i.e., the air and livings of marine creatures and bird species. Meanwhile, considering the complexity of the marine environment, dynamic monitoring is also essential for real-time weather forecasts on the sea, in order to judge whether it is appropriate for implementing the offshore maintenance of TR in PR.

5. **Transportation cost** \(C_{it}^{\text{T}} \): the fixed cost of employing and maintaining vessels and helicopters, and the variable cost of marine and air shipments to offshore wind turbines, including fuel cost and the cost of remaining at turbines for supporting maintenance activities. As to the maintenance of offshore wind farms, costs related to the manpower and equipment transportation account for a large proportion of the total maintenance related cost because of the special environment of the sea. It is formulated as

\[
C_{it}^{\text{T}} = (C_{it}^{\text{TV}} V_i + C_{it}^{\text{TH}} H_i)/LP_t + (C_{it}^{\text{CV}} V_i + C_{it}^{\text{CH}} H_i). \tag{9}
\]
The first term means the fixed cost for the use of vehicles, in which C^{v}_i and C^{h}_i are per unit fixed costs of vessels and helicopters when putting them into use, and V_i and H_i are the respective quantities of two vehicles the maintenance of TR$_t$ requires. Since this cost is incurred once when starting using a vessel or helicopter, it is divided by LP_i, which is the maintenance duration time of TR$_t$. In the second term, $C^{\text{csv}}_{i,t}$ and $C^{\text{csf}}_{i,t}$ are average variable shipment costs per vessel and helicopter, along with their fuel costs and waiting costs for maintaining TR$_t$.

(6) Adjustment cost $C^{A}_{i,t}$: the opportunity cost for adjusting the maintenance when the schedule needs to be altered because of changes in weather and power demand and some other emergency situations. As the maintenance is scheduled according to estimated data, some adjustments are required for the deployment of the maintenance. Thus the adjustment cost for TR$_t$ in PR$_t$, arises.

(7) Customer relationship management (CRM) cost $C^{\text{CRM}}_{i,t}$: the opportunity cost for maintaining the customer relationship. Although the maintenance aims at enhancing the system reliability of offshore wind farms, the risk of power shortage may increase due to the maintenance downtime. In order to retain customer satisfaction and loyalty, the CRM cost for TR$_t$ in PR$_t$ is invested to analyse customers, promote the benefits of the renewable wind energy, and make more long-term potential contracts possible.

Thus, the above seven elements constitute the total maintenance cost $C_{i,t}$ of TR$_t$ in PR$_t$ as

$$C_{i,t} = C_i^M + C_i^{\text{eq}} + C_i^T + C_i^{\text{csv}} + C_i^{\text{csf}} + C_i^{A} + C_i^{\text{CRM}},$$

where each item stands for one ingredient of the PM cost for offshore wind farms. Thereby, the maintenance cost minimisation objective function of our problem can be presented as

$$\min \sum_{i=1}^{m} \sum_{t=1}^{n} C_{i,t} x_{i,t} = \min \sum_{i=1}^{m} \sum_{t=1}^{n} (C_i^M + C_i^{\text{eq}} + C_i^T + C_i^{\text{csv}} + C_i^{\text{csf}} + C_i^{A} + C_i^{\text{CRM}}) x_{i,t},$$

in which the manpower cost C_i^M and the transportation cost C_i^T are detailed by their definitions, respectively, see Eqs. (8) and (9).

Notably, the environmental monitoring cost C_i^{env}, and the transportation cost C_i^{T} are designed especially for the PM of offshore wind farms due to the specificity of the marine environment, while the other five costs can also apply to that of general power systems.

4.3. Constraints

The constraints should not only be well applicable for the PM scheduling problem of general power plants, but also carefully devised for that of offshore wind farms. In total, thirteen families of constraints are proposed: supply and demand, maintenance necessity, maintenance continuity, duration, period, priority, and deadline constraints are the basic ones for the PM scheduling problem of power systems, see [1,4]. However, weather, manpower, vehicle, greenhouse gas emission, marine ecosystem, and bird population constraints are proposed by Dalig et al. [12], Gundegjerde et al. [23], Hassan [24], Karyotakis [26] and Michler-Cieluch et al. [36], and particularly designed for offshore wind power systems coping with the harsh offshore environment.

4.3.1. Supply and demand constraints

The electric power virtually generated which has taken out the maintenance downtime loss should be able to cover the customer demand entirely. So the supply and demand constraints guarantee that the power shortage never occurs in any time period,

$$\sum_{i=1}^{m} p_{i,t}(1-x_{i,t}) - d_t \geq 0, \quad t = 1, 2, \ldots, n,$$

which are namely to restrict net power reserves e_t (MW) in Eq. (3) no less than 0.

4.3.2. Maintenance necessity constraints

The maintenance of wind turbines that are especially located offshore costs enormous manpower and material resources, so every turbine is set to be maintained only once over the time horizon without any pause halfway.

$$\sum_{t=1}^{n} b_{i,t} = 1, \quad i = 1, 2, \ldots, m.$$

This means for any TR$_i$, it needs to be maintained once and for all during all n time periods.

4.3.3. Maintenance continuity constraints

When TR$_i$ starts to be maintained, it enters the downtime and maintenance works cannot be stopped before they are all finished. The maintenance continuity constraints clarify the relationships between the two sets of decision variables $x_{i,t}$ and $b_{i,t}$. The decision variables meet the following logical relationships
\[x_{it} \geq b_{it}, \quad i = 1, 2, \ldots, m, \quad t = 1, 2, \ldots, n, \]
(14)

which imply that when \(b_{it} = 1 \), \(x_{it} = 1 \) must hold. It means that when \(TR_t \) begins maintenance at the beginning of \(PR_t \), it must be in maintenance during the whole period. Moreover, Eq. (14) shows that when \(b_{it} = 0 \), \(x_{it} = 0 \) or 1, i.e., if the maintenance of \(TR_t \) does not start at \(PR_t \), it may not or may still be in maintenance in this period. Besides, another two additional relationships are derived as follows,

\[x_{it} - x_{i t-1} \leq b_{it}, \quad i = 1, 2, \ldots, m, \quad t = 1, 2, \ldots, n, \]
\[x_{it} + x_{i t-1} + b_{it} < 3, \quad i = 1, 2, \ldots, m, \quad t = 1, 2, \ldots, n, \]
(15)

where \(x_{i t-1} = 0 \) when \(t = 1 \). They limit the relationships of maintenance activities in two successive time periods \(PR_{t-1} \) and \(PR_t \).

4.3.4. Duration constraints

As to \(TR_t \), the duration of periods for its maintenance is predetermined and fixed by the project. The maintenance duration constraints limit are

\[\sum_{i=1}^{n} x_{it} = LP_t, \quad i = 1, 2, \ldots, m, \]
(16)

where \(LP_t \) is the number of time periods that \(TR_t \) needs for maintenance.

4.3.5. Period constraints

In any \(PR_t \), the power generation needs to satisfy the demand market. As turbines in maintenance stop working and have no electricity to output, the total number of turbines in maintenance in \(PR_t \) should be restricted to an upper limit.

\[\sum_{i=1}^{m} x_{it} \leq LT_t, \quad t = 1, 2, \ldots, n, \]
(17)

where \(LT_t \) is the presupposed limit of turbines shut down in \(PR_t \).

4.3.6. Priority constraints

Sometimes the maintenance of a single turbine needs to be fully done before another due to a variety of reasons, so the priority constraints set the precedence of the maintenance for two different turbines over the time horizon. We assume that the maintenance of \(TR_t \) is prior to that of \(TR_{t'} \), then

\[\sum_{k=1}^{i} b_{it} - b_{it'} \geq 0, \quad i = 1, 2, \ldots, m, \quad j \neq i, \quad t = 1, 2, \ldots, n, \]
(18)

where \(k \) represents the index of time periods from \(TR_t \) to \(TR_{t'} \), and

\[x_{it} + x_{i t'} \leq 1, \quad i = 1, 2, \ldots, m, \quad j \neq i, \quad t = 1, 2, \ldots, n. \]
(19)

It can be seen that the whole maintenance duration of \(TR_t \) should remain ahead of that of \(TR_{t'} \), and there is not any overlap period between the maintenance of the two turbines.

4.3.7. Deadline constraints

In some cases, the maintenance of a turbine has a deadline. If the maintenance of \(TR_t \) is stated to be accomplished by the end of \(PR_t \), there is a deadline constraint to compel \(TR_t \) to start maintaining no later than \(PR_{t-1} - LP_{t+1} \) as,

\[\sum_{i=1}^{LP_{t+1}} b_{it} = 1, \quad i = 1, 2, \ldots, m. \]
(20)

Thus, \(TR_t \) would have enough time to finish the maintenance before its deadline.

4.3.8. Weather constraints

The weather constraints are particular to the natural marine environment that only offshore wind energy confronts. Considering the complex and volatile weather conditions such as wind speed, wave height, flight visibility, marine storm, etc., the maintenance of offshore wind farms cannot be implemented in some periods [39]. For instance, the wind in winter is usually stronger than in other seasons, so the use of vessels, helicopters and crews are unsafe for use for maintenance in winter. Additionally, the high wind speed results in the rise of energy production and the customer electricity demand also increases considerably during the winter season. These weather factors encourage decision-makers to arrange maintenance in winter as little as possible. The weather constraints which restrict the maintenance execution are formulated as follows,

\[\sum_{i \in U} x_{it} = 0, \quad i = 1, 2, \ldots, m, \]
(21)
where U is the set of periods not permitted for maintenance due to the weather effect on the sea.

4.3.9. Manpower constraints

In any period t, crew numbers related to the maintenance should be guaranteed. Manpower, both for maintenance activities to offshore wind turbines by vessels and helicopters and for remote monitoring, control and logistics onshore cannot exceed the total available number of employees in P_R_t. Thus, the manpower constraints are expressed as

$$\sum_{i=1}^{m}(M^V_i + M^H_i) x_{i,t} \leq AM_t, \quad t = 1, 2, \ldots, n,$$

where M^V_i, M^H_i, and M^V_H respectively stand for all technical and administrative manpower required on vessels and helicopters and on land for maintaining TR_t, and AM_t is the total number of idle employees in P_R_t.

4.3.10. Vehicle constraints

Vessels and helicopters are vehicles for transiting crews and equipment from shore side to offshore turbines to operate maintenance works. The vehicle constraints restrict the numbers of vessels and helicopters used for maintenance in P_R_t, which cannot exceed the total available number of vehicles in that period. Similar to the forms of the above manpower constraints, the vehicle constraints can be presented separately for vessels and helicopters as

$$\sum_{i=1}^{m} V_i x_{i,t} \leq AV_t, \quad t = 1, 2, \ldots, n, \quad (23)$$

$$\sum_{i=1}^{m} H_i x_{i,t} \leq AH_t, \quad t = 1, 2, \ldots, n,$$

where V_i and H_i are numbers of vessels and helicopters TR_t requires, respectively to transport manpower and equipment for offshore maintenance according to different turbine locations, and AV_t and AH_t are the corresponding unoccupied vehicle numbers in P_R_t.

4.3.11. Greenhouse gas emission constraints

Vessels and helicopters used to transfer crews and equipment for offshore maintenance are supplied with fossil fuel, and then discharge various greenhouse gases mainly including carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), hydrofluorocarbons ($HFCs$), perfluorocarbons ($PFCs$), and sulphur hexafluoride (SF_6). These gases pollute the atmosphere, and cause greenhouse effect and global warming as well. Therefore, greenhouse gas emissions (g/km) in the maintenance system should also strictly comply with national emission standards. Thus, to be an environmentally friendly offshore wind energy project, the total gas emission mass of transfer vessels and helicopters in any period over the maintenance time horizon can be no more than the industrial emission standard as follow,

$$\sum_{i=1}^{m} 2z_i b_{i,t} q^V_i (wM^V_i + EQ^V_t) + q^H_i (wM^H_i + EQ^H_t) \leq GHG, \quad t = 1, 2, \ldots, n,$$

where z_i is the distance (km) from the docking point onshore to TR_t offshore, q^V_i and q^H_i (kg/kg-km) are respective kilograms of greenhouse gases that vessels and helicopters emit per kilogram weight of the items they bear for transport per kilometre, M^V_i and M^H_i, respectively represent the number of manpower required on vessels and helicopters for maintaining TR_t, w means the average weight (kg) of an employee, EQ^V_t and EQ^H_t indicate the weight (kg) of the equipment carried by vessels and helicopters, respectively for the maintenance of TR_t, and GHG is the emission standard (kg) regulated by the industry.

4.3.12. Marine ecosystem constraints

Apart from the atmospheric pollution transport vehicles for maintenance of offshore wind farms bring about, they also make contributions to the ecosystem. Fleets of vessels, the primary vehicles navigating on the sea for maintenance activities disturb the living environment of marine species to some extent. For example, the fuel leakage and marine litter from vessels shuttling back and forth can damage the living environment of marine life. The movement and noise they make scare the fish school, and can have negative effects on fish migration and also influence the mariculture. In order to protect the marine ecosystem from impacts of moving vessels, the number of navigating vessels in P_R_t should be no more than the ceiling stipulated by the project based on actual marine situations as

$$\sum_{i=1}^{m} V_i (b_{i,t} + b_{i,t-1LP+1}) \leq LV_t, \quad t = 1, 2, \ldots, n,$$

where V_i is the amount of vessels to transit for TR_t, $b_{i,t}$ and $b_{i,t-1LP+1}$ are respective indications of vehicles out and return journeys because of offshore maintenance in P_R_t, and LV_t is the total permitted amount of moving vessels in each period.
4.3.13. Bird population constraints

Low-flying helicopters on out and return journeys for offshore maintenance impact the life and migration of the bird population. Since birds are sensitive to human disturbance, special care is required when using helicopters to transit crews and equipment for maintenance, in order to avoid causing difficulties for birds or endangering their lives. Hence, the number of navigating helicopters in each period should be tightly controlled for bird population protection. It cannot exceed the upper limit \(LH_t \) in \(PR_t \) as

\[
\sum_{i=1}^{m} H_i (b_{ix} + b_{ix-LP_{i+1}}) \leq LH_t, \quad t = 1, \ldots, n,
\]

where \(H_i \) is the helicopter quantity for transportation while maintaining \(TR_i \), and the bird population constraints have similar formulations to the marine ecosystem constraints proposed above.

4.4. Multi-objective programming model and contrast model

In terms of the above two objective functions and thirteen constraints, a non-linear multi-objective programming model for our maintenance scheduling optimisation problem of offshore wind farms is proposed as follows,

\[
\begin{align*}
\max_{X} & \sum_{i=1}^{n} \frac{1}{n} \left[\sum_{i=1}^{n} \left(\sum_{t=1}^{m} p_{it} (1-x_{it}) - d_t \right) \right]^{\frac{1}{\gamma}} \\
\min_{X} & \sum_{i=1}^{n} \sum_{t=1}^{m} \left(C_{it}^{M} + C_{it}^{EQ} + C_{it}^{L} + C_{it}^{EM} + C_{it}^{A} + C_{it}^{CRM} \right) x_{it}
\end{align*}
\]

subject to :

\[
\begin{align*}
\sum_{i=1}^{m} p_{it} (1-x_{it}) - d_t & \geq 0, \quad t = 1, \ldots, n \\
\sum_{i=1}^{n} b_{it} & = 1, \quad i = 1, \ldots, m \\
x_{it} & \geq b_{it}, \quad i = 1, \ldots, m, \quad t = 1, \ldots, n \\
x_{it} - x_{i,t-1} & \leq b_{it}, \quad i = 1, \ldots, m, \quad t = 1, \ldots, n \\
x_{it} + x_{i,t-1} + b_{it} & < 3, \quad i = 1, \ldots, m, \quad t = 1, \ldots, n \\
\sum_{t=1}^{n} x_{it} & = LP_i, \quad i = 1, \ldots, m \\
\sum_{i=1}^{m} x_{it} & \leq LT_t, \quad t = 1, \ldots, n \\
\sum_{t=1}^{i} b_{it} - b_{j,t} & \geq 0, \quad i = 1, \ldots, m, \quad j \neq i, \quad t = 1, \ldots, n \\
x_{it} & \leq 1, \quad i = 1, \ldots, m, \quad j \neq i, \quad t = 1, \ldots, n \\
\sum_{i=1}^{m} b_{it} & = 1, \quad i = 1, \ldots, m \\
\sum_{i \in U} x_{it} & = 0, \quad i = 1, \ldots, m \\
\sum_{i=1}^{m} (M_{it}^{V} + M_{it}^{H} + M_{it}^{L}) x_{it} & \leq AM_t, \quad t = 1, \ldots, n \\
\sum_{i=1}^{m} V x_{it} & \leq AV_t, \quad t = 1, \ldots, n \\
\sum_{i=1}^{m} H x_{it} & \leq AH_t, \quad t = 1, \ldots, n
\end{align*}
\]
generalised model in wider scope. The convenience of transforming manifests the good applicability and flexibility of Model
testing that there exists another common method to represent the reliability maximization objective differently[8]. They
power systems like
define the corresponding objective function as the single objective in their generator maintenance scheduling problem of
offshore wind farms. Two components of the cost criterion (the environmental monitoring cost C_{t1}^{EM} and the transportation cost C_{t1}^{TR} in
Eq. (9)), and six types of constraints (weather, manpower, vehicle, greenhouse gas emission, marine ecosystem, and bird
population constraints, see Eqs. (21)–(26)) are specially formulated for the PM of offshore wind farms.

Remark 1. Eliminating or adjusting some of the costs and constraints that have been implemented particularly for offshore
wind farms, a generalised model of Model (27a,b) is applicable to general power systems.

On the other hand, the uniqueness of Model (27a,b) for offshore wind farms can be reflected from differences with the
generalised model in wider scope. The convenience of transforming manifests the good applicability and flexibility of Model
(27a,b), so that we can declare that the PM scheduling model proposed in this paper is reasonable. Furthermore, it is interest-
ing that there exists another common method to represent the reliability maximization objective differently [8]. They define the corresponding objective function as the single objective in their generator maintenance scheduling problem of
power systems like

$$\min \sum_{i=1}^{n} \sum_{t=1}^{m} p_{i,t} (1 - x_{i,t}) - d_{t} \right)^{2},$$

which is to quantify the reliability as the sum of squares of the net power reserve (SSR). Thus, the minimisation of the SSR
implies the reliability maximization. This definition of the reliability objective is generated from another perspective that the
high system reliability implies the little difference among the net power reserves for each time period, namely to make full use of the electric energy and avoid power waste. It is to pursue a high resource utilisation rate. Therefore, we are going to employ this form of reliability maximisation objective function into our multi-objective, non-linear programming model for PM scheduling of offshore wind farms as well, in order to build a contrast (benchmark) model of Eqs. (27a,b) to compare with the one given by Eq. (28) after converting it into the range $[0, 1]$. To achieve this, we use the weight coefficient $1 / \left(\sum_{i=1}^{m} p_{i,t} - d_{t}\right)^{2}$ of the SSR $\left(\sum_{i=1}^{m} p_{i,t} (1 - x_{i,t}) - d_{t}\right)^{2}$. Thus, the equivalent form of this different maximisation objective function in Eq. (28) can be indicated as

$$\min \sum_{i=1}^{n} \sum_{t=1}^{m} p_{i,t} (1 - x_{i,t}) - d_{t} \right)^{2} \sum_{t=1}^{n} \left(\sum_{i=1}^{m} p_{i,t} - d_{t}\right)^{2}.$$

Thus, the contrast model of our problem is constructed by substituting the aforesaid reliability objective Eq. (7) in Eq.
(27a) for the minimisation of the SSR Eq. (29), and remaining all the rest objective and constraints unchanged.\footnote{\textit{It should be pointed out that the two values of reliability from Eq. (27a) and from Eq. (29) are originated from two different reliability indices, which provide two different interpretations of the reliability ensured by power reserves.}}

In the later section, comparisons and analyses between the maintenance scheduling optimisation model Eqs. (27a,b) and
its contrast model for offshore wind farms will be made to have a careful investigation of their performances and characteristics.

5. Nondominated sorting genetic algorithm II

The nondominated sorting genetic algorithm II (NSGA-II) utilised for solving the proposed Model (27a,b) for the PM
scheduling of offshore wind farms is going to be introduced. Abundant Pareto-optimal solutions can be obtained from the
NSGA-II. As none of Pareto-optimal solutions is absolutely better than any other one, each of them is acceptable [21]. There-
fore, they can provide various trade-off solutions for determining a satisfying solution to support the decision-making of the
offshore wind farm project. The fast nondominated sorting procedure, the fast crowding distance estimation procedure, and
the simple crowded-comparison operator are regarded as three innovations of the NSGA-II, so that weaknesses of NSGA are alleviated to a large extent owing to improvements in aspects of the computational complexity, elitism and diversity preser-
Thus, the whole procedure of the NSGA-II for solving the proposed Model (27a,b) is presented in Algorithm 1 in detail (see Appendix A). It should be noted that the contrast model is also similarly solved by Algorithm 1.

Algorithm 1. NSGA-II for PM scheduling model of offshore wind farms

1: Set $t = 1$;
2: Initialize the parent population P_0 and set it as P_t with pop_size feasible solutions.
3: Calculate values of objective functions Eqs. (7) and (11) in Model (27a) for all solutions in P_t.
4: Rank solutions in P_t based on the fast nondominated sorting approach. So each solution i is assigned with a nondomination rank i_{rank}.
5: Calculate the crowding distance i_{distance} of each solution i in P_t based on the density estimation metric.
6: Select pop_size solutions by the binary tournament selection utilising the crowded comparison operator which is based on the nondomination rank i_{rank} and the crowding distance i_{distance}. The selected solutions are used to create an offspring population.
7: Update solutions by crossover and mutation operations. The feasibility of offspring population Q_t should be checked by constraints Eqs. (12)–(26) in Model (27b).
8: Execute the elitist strategy containing the combination and comparison of P_t and Q_t, $t \leftarrow t + 1$, and the new P_t with pop_size solutions is output for the next iteration.
9: Repeat Steps 6–8 for a given number of iterations.
10: Collect Pareto-optimal solutions to support the decision-making.

6. Numerical example

In order to verify the feasibility, effectiveness and performance of the proposed constrained non-linear multi-objective programming model for PM scheduling of offshore wind farms, Eqs. (27a,b), and its contrast model, as well as the corresponding NSGA-II, a hypothetical case of offshore wind farm preventive maintenance is illustrated as a numerical example. The results are analysed and compared from three main respects in this section.

6.1. Background and parameters

In this example, we consider an offshore wind farm with 50 wind turbines. The time horizon is 52 weeks of a year. Data of the generated energy p_i, the customer power demand d_c, all maintenance cost components

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of attainment exponents s_i into different decision-maker's attitudes.</td>
</tr>
<tr>
<td>s_i</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
</tbody>
</table>
$c_{it}^M, c_{it}^{EQ}, c_{it}^{EM}, c_{it}^{A},$ and $c_{it}^{CRM},$ the maintenance capacity $LT_t,$ manpower demands M_i^V, M_i^H and $M_i^L,$ the available manpower $AM_t,$ vehicle demands V_i and $H_i,$ available vehicle amounts AV_t and $AH_t,$ all greenhouse gas emission related parameters $z_i, q_i, w_i, EQ_i^L, EQ_i^H$ and $GHG,$ navigating vehicle limits LV_t and $LH_t,$ have already been estimated and set reasonably according to historical data and expertise (see Tables B.6–B.9 in supplementary material and B.10 in Appendix B). Besides, the maintenance duration LP_i of each turbine is 3 weeks. The maintenance of TR5 is prior to that of TR16. The deadline of TR27 is PR48. The time set not allowed for maintenance is $U = \{1, 2, 3\}.$ Parameter settings for NSGA-II are given in Table B.11 in Appendix B.

6.2. Effects of different decision-maker’s attitudes

As there are mainly four different kinds of decision-maker’s attitudes towards the wind farm project over the time horizon, i.e., fully rational, optimism biased, wait-and-see and pessimism biased preferences, their different impacts on final solutions are shown in this section. It essentially means we need to assign attainment exponents s_1, s_2, \ldots, s_{52} by various combinations of s_i with positive, neutral or negative effects in our case.

First, we allocate all 52 attainment exponents to four types of attitudes as shown in Table 3. As to the fully rational attitude (2nd and 8th columns), we select s_1, s_2, \ldots, s_{18} randomly from $[0, 1),$ make $s_{19}, s_{20}, \ldots, s_{34}$ all equal to 1, and choose $s_{35}, s_{36}, \ldots, s_{52}$ randomly from $(1.5),$ which can be approximately equivalent to the interval $(1, +\infty).$ For the optimism biased attitude (3rd and 9th columns), s_1, s_2, \ldots, s_{52} are entirely from $[0, 1).$ For the wait-and-see attitude (4th and 10th columns), all s_i are equal to 1, which means no exponents exist and the same situation with that of the first conventional reliability criterion (the power reserve ratio). For the pessimism biased attitude, s_1, s_2, \ldots, s_{52} in the 5th and 11th columns are randomly picked from $(1.5),$ while those in the 6th and 12th columns are all set as $s_i = 2,$ which is a special case for further comparison with the contrast model containing quadratic terms.

All five multi-objective programming models (based on Eqs. (27a,b)) are implemented for 5000 iterations, respectively and the final solutions are displayed in Fig. 2 by five different point types and also in Table 4. It is apparent from Fig. 2 and more precisely from Table 4 that results on the basis of the fully rational attitude (yellow asterisks in Fig. 2 and 2nd row in Table 4) have the best spread of Pareto-optimal solutions, which can provide much wider and

<table>
<thead>
<tr>
<th>Attitude</th>
<th>ReliabilityL</th>
<th>ReliabilityU</th>
<th>Cost1(m€)</th>
<th>Cost2(m€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rational</td>
<td>0.684</td>
<td>0.845</td>
<td>6.939</td>
<td>8.600</td>
</tr>
<tr>
<td>Optimistic</td>
<td>0.949</td>
<td>0.968</td>
<td>7.096</td>
<td>8.862</td>
</tr>
<tr>
<td>W&s</td>
<td>0.888</td>
<td>0.910</td>
<td>7.069</td>
<td>8.765</td>
</tr>
<tr>
<td>Pessimistic1</td>
<td>0.338</td>
<td>0.553</td>
<td>6.512</td>
<td>8.511</td>
</tr>
<tr>
<td>Pessimistic2</td>
<td>0.770</td>
<td>0.824</td>
<td>6.914</td>
<td>8.305</td>
</tr>
</tbody>
</table>
more distinguishable choices both on system reliability (changes from 0.684 to 0.845) and maintenance cost (from €6.939 m to €8.600 m) directions for trading-off and supporting the decision-making. Although solutions with optimistic, wait-and-see and pessimistic \((s_t = 2)\) attitudes achieve extremely high values of reliability, their solution sets contain a few gaps and their spreads are relatively narrow and partial on the reliability axis. Moreover, solutions with the pessimistic attitude \((s_t > 1)\) form good spreads on both of the reliability and the cost axes, but their values of reliability are relatively too low (even the upper bound Reliability = 0.553). Hence, we can conclude that the fully rational attitude seems more appropriate for decision-makers to hold because it not only offers more diverse options, but also makes the results more reasonable and effective.

Thus, in the following analyses, we will primarily focus on the multi-objective optimisation model with attainment exponents setting based on the fully rational attitude. Obviously, this is not an exhaustive and conclusive way, as different decision-makers can take an alternative strategy as the most preferable one. Actually, the model flexibility is one of the main advantage of our treatment.

6.3. Solutions and guidance for decision-making

In this section, we will analyse in detail the Pareto-optimal solutions of the proposed model \((\text{Eqs. (27a,b)})\), in order to provide a practical guidance for decision-making on the PM scheduling problem of offshore wind farms. Values of attainment exponents \(s_t\) are assigned according to the fully rational attitude, i.e., and the same with values in the 2nd and 8th columns of Table 3. In Fig. 3, asterisks represent Pareto-optimal solutions after 5000 iterations. We can extract some decision instructions aiming at different strategic environments of an offshore wind farm project as follows:

(1) If the offshore wind farm project executes a cost priority strategy, it means that decision-makers put the maintenance cost as the first consideration and want to save as much as possible. To pursue low cost implies to sacrifice the achievement of the system reliability. As long as the reliability is not so low that it will influence the basic stability, decision-makers are willing to adopt a solution with the cost close to the lowest and the low but acceptable reliability. For example, the solution with the lowest cost as €6.939 m and reliability as 0.684 among all results, i.e., the asterisk on the bottom right corner in Fig. 3, can be chosen as a decision of cost priority. The corresponding maintenance schedule of this solution is shown in Fig. 4a, in which the blocks refer to periods in maintenance. In addition, five other cost priority solutions are given in Table 5a.

(2) If the offshore wind farm project carries out a reliability priority strategy, which implies that the customer demand satisfaction is more significant to decision-makers and they have sufficient investments so that the maintenance budget is not a significant problem, Pareto-optimal solutions in the top left corner of Fig. 3 are their best choices. As long as the maintenance cost does not exceed the budget, higher reliability level can be aspired. The upper bound decision with the highest reliability can be easily found in the figure. It reaches the reliability as 0.845 and the cost as €8.600 m as a compensation. The corresponding maintenance schedule of this solution is shown in Fig. 4b. Also, five other reliability priority solutions are listed in Table 5b. It is notable that the blocks are concentrated in relatively early periods and there
Fig. 4. Example Schedules of different Pareto-optimal solutions.
are no more turbines in maintenance from PR34 to PR40 and since PR47. The reason for this phenomenon is that when decision-makers hold the fully rational attitude, settings of attainment exponents s_i with this attitude have already decided that the high reliability signifies maintaining as early as possible. Differences in distributions of schedules tend to be the most obvious between two solutions with the lower bound of cost and the upper bound of reliability which can be observed from Fig. 4a and b.

If both the maintenance cost and the system reliability are important and almost unbiased to the project strategy in eyes of decision-makers, some compromise solutions should be considered. Compromise solutions mean those not sacrificing a lot on the optimisation of either objective function, so which also implies a particularly outstanding optimised direction can also not be reached among these solutions. They are marked in the circle in Fig. 3, and six compromise solutions are listed in Table 5c. The maintenance schedule of the first solution in Table 5c is indicated in Fig. 4c. It can be seen that the distribution of the schedule in Fig. 4c has less obvious centralised tendency than those in Fig. 4a and b.

To sum up, it can be seen that no matter what strategy the offshore wind farm project adopts, Pareto-optimal solutions obtained from the optimisation are able to provide adequate alternative satisfying solutions to decision-makers. According to Porter’s generic strategies [38], when decision-makers take adopt a cost leadership strategy for offshore wind farm maintenance especially in the early time of the project, a decision can be selected from solutions in the bottom right corner of Fig. 3. When the execution of the project begins to stabilise, the differentiation strategy (i.e., the customer-oriented strategy) is more likely to be adopted in order to satisfy customer needs for more profits. On this occasion, the primary mission is to pursue high reliability, which means to make a decision from the solutions in the top left corner of Fig. 3. When the focus strategy is taken to consider the cost and the customer satisfaction simultaneously, decision-makers are not partial to either of the two objectives. A decision to support this coordination strategy can
be made from solutions in the circle of Fig. 3. The maintenance schedule solutions corresponding to a certain maintenance strategy (cost leadership, differentiation, or focus strategies) can be timely and newly obtained by implementing the model and algorithm again after constraining those wind turbines that already completed the maintenance jobs in the past periods, whenever the decision-maker determines to switch to a different strategy from the present one at any period during the time horizon.

6.4. Comparisons between the two reliability objectives

In this section, we make comparisons between two approaches (i.e., the reliability maximisation and the SSR minimisation) of the system reliability maximisation objective in the proposed model, Eqs. (27a,b), and its contrast model. Comparisons are made twice, one is the proposed model with the fully rational attitude vs. the contrast model, and the other is the proposed model with attainment exponents $s_t = 2$ vs. the contrast model because it contains quadratic terms.

Results of the two comparisons are shown in the following Fig. 5a and b, which are found to be almost similar. It should also be noted that in both figures, the left vertical axis is for Model (27a,b) and the right vertical axis is for its contrast model. Hence, some synthetical conclusions can be drawn from the two figures:

1. The maintenance cost of Model (27a,b) can achieve lower results than that of the contrast model, and some high values of the cost that the contrast model includes are not in the value range of Model (27a,b). Consequently, Model (27a,b) has an obvious cost advantage over its contrast model.

2. With respect to the system reliability, it can be seen from Fig. 5a that the range of the reliability distribution of Model (27a,b) (approximately 0.16) is much wider than that of the contrast model (approximately 0.03), which means Model (27a,b) can offer a better decision support and more reliability choices than its contrast model.

7. Conclusions

In this paper, we contribute to the corresponding literature in the following four ways: (i) we optimise the reliability and cost objectives simultaneously in the PM scheduling problem with the background of offshore wind farms, making the problem more comprehensive and closer to reality; (ii) we propose a new definition of the reliability criterion by utilising an attainment exponent which can be regarded as an expansion of previous definitions; (iii) we also well design the components of the maintenance cost criterion and constraints particularly applicable to the offshore wind farm environment; (iv) we employ the NSGA-II to solve our constrained non-linear multi-objective programming model for the PM scheduling of offshore wind farms, and obtain a set of Pareto-optimal solutions for supporting decision-making.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments that significantly improved the quality of this paper. Moreover, the gracious supports of the EPSRC and ESRC Centre for Doctoral Training on Quantification and Management of Risk and Uncertainty in Complex Systems and Environment (EP/L015927/1), the Recruitment Program of High-end Foreign Experts (Grant No. GDW20163100009), and the China Scholarship Council ([2014] 3026) should be acknowledged.

Appendix A. Nondominated sorting genetic algorithm II [13]

A.1. Fast nondominated sorting procedure

For each individual p in the population of size N, two entities are calculated: (1) S_p, a set of individuals that the individual p dominates, and (2) domination count n_p, the number of individuals which dominate the individual p. All individuals in the first nondominated front will have their domination count as zero. Now, for each individual p in the first front, we visit each member q of its set S_p and reduce its domination count by one. In doing so, if for any member q, the domination count becomes zero, we put it in a separate list Q. These members belong to the second nondominated front. Next, the above procedure is continued with each member of Q and the third front is identified. This process continues until all fronts are identified. Thus, the pseudocode of fast nondominated sorting approach which requires $O(mN^2)$ computations are shown in Algorithm 2.
Algorithm 2. Fast-non-dominated-sort (P)

1: for each $p \in P$ do
2: \hspace{1em} $S_p = \emptyset$
3: \hspace{1em} $n_p = 0$
4: \hspace{1em} for each $q \in P$ do
5: \hspace{2em} if $p \prec q$ then \hspace{1em} ▷ If p dominates q
6: \hspace{2em} \hspace{1em} $S_p = S_p \cup \{q\}$ \hspace{1em} ▷ Add q to the set of solutions dominated by p
7: \hspace{2em} \hspace{1em} else if $q \prec p$ then \hspace{1em} ▷ Increment the domination counter of p
8: \hspace{2em} \hspace{1em} \hspace{1em} $n_p = n_p + 1$
9: \hspace{2em} \hspace{1em} end if
10: \hspace{1em} end for
11: \hspace{1em} if $n_p = 0$ then \hspace{1em} ▷ p belongs to the first front
12: \hspace{2em} \hspace{1em} $p_{\text{rank}} = 1$
13: \hspace{2em} \hspace{1em} $F_1 = F_1 \cup \{p\}$
14: \hspace{1em} end if
15: end for
16: $i = 1$
17: while $F_i \neq \emptyset$ do
18: \hspace{1em} $Q = \emptyset$ \hspace{1em} ▷ Used to store the members of the next front
19: \hspace{1em} for each $p \in F_i$ do
20: \hspace{2em} \hspace{1em} for each $q \in S_p$ do
21: \hspace{3em} \hspace{1em} $n_q = n_q - 1$
22: \hspace{3em} \hspace{1em} if $n_q = 0$ then \hspace{1em} ▷ q belongs to the next front
23: \hspace{3em} \hspace{2em} $q_{\text{rank}} = i + 1$
24: \hspace{3em} \hspace{2em} $Q = Q \cup \{q\}$
25: \hspace{3em} \hspace{1em} end if
26: \hspace{2em} \hspace{1em} end for
27: \hspace{2em} end for
28: \hspace{1em} $i = i + 1$
29: \hspace{1em} $F_i = Q$
30: end while

A.2. Fast crowding distance estimation procedure

In the proposed NSGA-II, the sharing function approach that the original NSGA used is replaced with a crowded-comparison approach which no longer requires any user-defined parameter for maintaining sustainable diversity among population members and has a better computational complexity. To describe this approach, a density-estimation metric is firstly defined to get an estimate of the density of individuals surrounding a particular individual in the population. We calculate the average distance of two points on either side of this point along each of the objectives. This quantity d_{distance} serves as an estimate of the perimeter of the cuboid formed by using the nearest neighbours as the vertices (called the crowding distance). The Algorithm 3 outlines the crowding distance computation procedure of all individuals in a nondominated set I and has $O(mN\log N)$ computational complexity.

Algorithm 3. Crowding-distance-assignment (I)

1: $l = |I|$ \hspace{1em} ▷ number of solutions in I
2: for each i do
3: \hspace{1em} set $I[i]_{\text{distance}} = 0$ \hspace{1em} ▷ initialize distance
4: end for
5: for each objective m do
6: \hspace{1em} $I = \text{sort}(I, m)$ \hspace{1em} ▷ sort using each objective value
7: \hspace{1em} $I[1]_{\text{distance}} = I[1]_{\text{distance}} = \infty$ \hspace{1em} ▷ so that boundary points are always selected
8: \hspace{1em} for $i = 2$ to $(l - 1)$ do
9: \hspace{2em} $I[i]_{\text{distance}} = I[i]_{\text{distance}} + (I[i + 1].m - I[i - 1].m)/(f_{\text{max}}^m - f_{\text{min}}^m)$ \hspace{1em} ▷ for all other points
10: \hspace{2em} end for
11: end for
A.3. Simple crowded-comparison operator

The crowded-comparison operator (\prec_n) guides the selection and elitism procedure at various stages of the algorithm to a uniformly spread-out Pareto-optimal front. In the selection step of this algorithm, we use a binary tournament selection based on crowded-comparison operator. Furthermore, in the elitist strategy, we utilise crowded-comparison operator to reduce the population. Each individual i in the population has two attributes: (1) nondomination rank i_{rank}, and (2) crowding distance i_{distance}. A partial order \prec_n is defined as follows,

$$i \prec_n j \quad \text{if} \quad (i_{\text{rank}} < j_{\text{rank}}) \quad \text{or} \quad ((i_{\text{rank}} = j_{\text{rank}}) \quad \text{and} \quad (i_{\text{distance}} > j_{\text{distance}}))$$

(A.1)

The individual with a lower rank is preferred between two individuals with different nondomination ranks or, if both individuals belong to the same front, we prefer the individual that is located in a less crowded region. The complexity of sorting on crowded-comparison operator is $O(N\log N)$.

A.4. Crossover and mutation operator

As this algorithm is based on real coding, it uses simulated binary crossover (SBX) operator for crossover process and polynomial mutation for mutation process. Distribution indexes η_c and η_m are used for crossover and mutation operators [13].

A.5. Elitist strategy

Elitism is to ensure that the excellent individuals in parent population can be selected to form the new parent population. It can speed up the performance of the GA significantly, which can also help in preventing the loss of good individuals once they are found. It needs to compare current population with the previously found best nondominated individuals, so we first describe the tth generation of the proposed Algorithm 4.

Algorithm 4. Elitist-strategy (P_t)

1: $R_t = P_t \cup Q_t$ \quad \triangleright \text{combine parent and offspring population}$
2: $F =$Fast-non-dominated-sort (R_t) \quad \triangleright \text{Fast nondominated fronts of } R_t
3: $P_{t+1} = \emptyset$ and $i = 1$
4: while $|P_{t+1}| + |F_i| \leq N$ do
5: \quad Crowding-distance-assignment(F_i) \quad \triangleright \text{calculate crowding-distance in } F_i
6: \quad $P_{t+1} = P_{t+1} \cup F_i$ \quad \triangleright \text{include } i\text{th nondominated front in the parent pop}
7: \quad $i = i + 1$ \quad \triangleright \text{check the next front for inclusion}$
8: end while
9: sort(F_i, \prec_n) \quad \triangleright \text{Sort in descending order using } \prec_n
10: $P_{t+1} = P_{t+1} \cup F_i[1 : (N - |P_{t+1}|)]$ \quad \triangleright \text{Choose the first } (N - |P_{t+1}|) \text{ elements of } F_i
11: $Q_{t+1} =$ Make-new-pop(P_{t+1}) \quad \triangleright \text{use selection, crossover and mutation to create a new population } Q_{t+1}$
12: $t = t + 1$ \quad \triangleright \text{increment the generation counter}$

The new parent population P_{t+1} of size N is now used in the next generation or cycle for selection, crossover and mutation to create a new offspring population of size N.

Until now, the whole cycle of NSGA-II has been introduced. The overall computational complexity of the algorithm is $O(mN^2)$, which is up to the nondominated sorting procedure of the algorithm. The fast nondominated sorting procedure, the fast crowding distance estimation procedure, and the simple crowded-comparison operator are regarded as three innovations of NSGA-II, where the weaknesses of NSGA have been alleviated to a large extent owing to the improvements they brought in aspects of computational complexity, elitism and diversity preservation. Based on the previous literature, we conclude a complete process of this algorithm given in Fig. A.6.
Fig. A.6. Process of NSGA-II.
Appendix B. Parameter settings of the model for the numerical example

Table B.10

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q^V) (kg/kg km)</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>(q^H) (kg/kg km)</td>
<td>2 \times 10^{-4}</td>
</tr>
<tr>
<td>(w) (kg)</td>
<td>65</td>
</tr>
<tr>
<td>(G_{HC}) (kg)</td>
<td>110</td>
</tr>
</tbody>
</table>

Table B.11

<table>
<thead>
<tr>
<th>NSGA-II parameter</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size, (N)</td>
<td>100</td>
</tr>
<tr>
<td>Length of individual, (M)</td>
<td>50</td>
</tr>
<tr>
<td>Number of maximum generations, (maxgen)</td>
<td>5000</td>
</tr>
<tr>
<td>Crossover probability, (P_c)</td>
<td>0.54</td>
</tr>
<tr>
<td>Mutation probability, (P_m)</td>
<td>0.06</td>
</tr>
<tr>
<td>Crossover index, (\eta_c)</td>
<td>20 (simulated binary crossover)</td>
</tr>
<tr>
<td>Mutation index, (\eta_m)</td>
<td>20 (polynomial mutation)</td>
</tr>
</tbody>
</table>

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ymssp.2017.10.035.

References

